“balisong”通过精心收集,向本站投稿了6篇高中数学求最值的方法,以下是小编为大家准备的高中数学求最值的方法,仅供参考,欢迎大家阅读。

高中数学求最值的方法

篇1:高中数学求最值的方法

函数的最值问题既是历年高考重点考查的内容之一,也是中学数学的主要内容。分享了高中数学求最值的几种方法,希望对同学们有帮助!

(1)代数法。代数法包括判别式法(主要是应用方程的思想来解决函数最值问题)配方法(解决二次函数可转化为求二次函数的最值问题)不等式法(基本不等式是求最值问题的重要工具,灵活运用不等式,能有效地解决一些给定约束条件的函数最值问题)④换元法(利用题设条件,用换元的方法消去函数中的一部分变量,将问题化归为一元函数的最值,以促成问题顺利解决,常用的换元法有代数换元法和三角换元法)。

①判别法:判别式法是等式与不等式联系的重要桥梁,若能在解多元函数最值过程中巧妙地运用,就能给人一种简单明快、耳目一新的感觉。而应用判别式的核心在于能否合理地构造二次方程或二次函数,还需注意是否能取等号。若函数可化成一个系数含有y的关于x的二次方程a(y)x2+b(y)x+c(y)=0,在a(y)≠0时,由于x,y为实数,必须有:△=[b(y)]―4a(y)c(y)≥0,由此求出y所在的范围确定函数最值。

②配方法:配方法多使用于二次函数中,通过变量代换,能变为关于t(x)的二次函数形式,函数可先配方成为f(x)=a[t(x)―m]2+n的形式,再根据二次函数的性质确定其最值(此类题的解法关键在于用“配方法”将二次函数一般式化为顶点式,同时要考虑顶点的横坐标的值是否落在定义域内,若不在定义域内则需考虑函数的单调性)。

③不等式法:均值不等式求最值,必须符合“一正、二定、三相”这三个必要条件,因此当其中一些条件不满足时应考虑通过恰当的恒等变形,使这些条件得以满足“和定积最大,积定和最小”,特别是其等号成立的条件。(在满足基本不等式的条件下,如果变量的和为定值,则积有最大值;变量的积为定值,则和有最小值。本例中计算的目的,是利用隐含在条件之中的和为定值,当然这里还需要利用系数的凑合才能达到目的,具有一定技巧)

④换元法:换元法又叫变量替换法,即把某个部分看成一个式子,并用一个字母代替,于是使原式变得简化,使解题过程更简捷(在利用三角换元法求解问题时,关键还是要在掌握好三角函数常用关系式的基础上,结合所求解的函数式,慎重使用)。

(2)数形结合法。数形结合法是数学中的一种重要的思想方法,即考虑函数的几何意义,结合几何背景,把代数问题转化为几何问题,解法往往显得直观、简捷。通过数与形之间的对应和转化来解题,有许多的优越性。将抽象的数学语言和直观的图形结合起来,借助几何图形活跃解题思路,使解题过程简化。有时函数最值也借助数形结合方法来求解。

①解析式:解析法是观察函数的解析式,结合函数相关的性质,求解函数最值的方法。

②函数性质法:函数性质法主要是讨论利用已学函数的性质,如函数的单调性求函数最值等。

③构造复数法:构造复数法是在已经学习复数章节的基础上,把所求结论与复数的相关知识联系起来,充分利用复数的性质来进行求解。

④求导法(微分法):导数是高中现行教材新增加的内容,求导法求函数最值是应用高等数学的知识解决初等问题,可以解决一类高次函数的最值问题。找闭区间[a,b]上连续的函数f(x)的最大(或最小)值时,将不可导点、稳定点及a,b处的函数值作比较,最大(或最小)者即为最大(或最小)值。

综上可知,函数最值问题内涵丰富,解法灵活,没有通用的方法和固定的模式,在解题时要因题而异;而且上述方法并非彼此孤立,而是相互联系、相互渗透的,有时一个问题需要多法并举,互为补充,有时一个题目又会有多种解法。因此,解题的关键在于认真分析和思考,因题而异地选择恰当的解题方法,当一题有多种解法时,当然应该注意选择最优解法。

[高中数学求最值的方法]

篇2:数学求最值方法总结

数学求最值方法总结

下面对求最值问题的常用方法进行总结并举例说明,利用各类型的典型例题,分析求最值问题的解题思路,以揭示其中的特征和规律。

方法一:利用单调性求最值

学习导数以后,为讨论函数的性质开发了前所未有的前景,这不只局限于基本初等函数,凡是由几个或多个基本初等函数加减乘除而得到的新函数都可以用导数作为工具讨论函数单调性,这需要熟练掌握求导公式及求导法则,以及函数单调性与导函数符号之间的关系,还有利用导数如何求得函数的极值与最值。

例1 已知函数,当x∈[-2,2]时,函数f(x)的图象总在直线y=a-e2的上方,求实数a的取值范围。

分析:此题属于恒成立问题,恒成立问题大都转化为最值问题。

解:原问题等价于f(x)>a-e2恒成立,即x2+ex-xex>a-e2在[-2,2]上恒成立,即x2+ex-xex+e2>a在[-2,2]上恒成立。

令g(x)=x2+ex-xex+e2>a-e2,x∈[-2,2],原问题等价于a 下面利用导数讨论g(x)的.最小值,求导可得g'(x)=x(1-ex)。

当x∈[-2,0]时,g'(x)≤0,从而g(x)在[-2,0]上单调递减;

当x∈(0,2]时,g'(x)<0可知g(x)在(0,2]上也单调递减。

所以g(x)在[-2,2]上单调递减,从而g(x)min=g(2)=2即a∈(-∞,2)

评注:本题是求参数的取值范围问题,利用等价转化的思想可化为不等式恒成立问题,进而化为最值问题,再借助于导数讨论函数的单调性求出的最值。其实高中阶段接触到的最值问题大都可以运用单调性法求得最值。

方法二:利用不等式求最值

掌握和灵活运用,│a│+│b│≥│a±b│≥││a│-│b││这一类型的基本不等式,在求一些函数最值问题时通常十分便捷,在解题时务必注意考虑利用不等式求最值的条件限制 。

例2 若x∈R,且0 分析:本题可以运用单调性法求最值,但是较麻烦,下面介绍一种新的方法。

解:

由0 则,当且仅当,即时取等号。

故当时,取得最小值9。

例3 求使不等式│x-4│+│x-3│ 分析:此题若用讨论法,可以求解,但过程较繁;用绝对值不等式的性质求解却十分方便。

解:令f(x)=│x-4│+│x-3│原不等式有解,只需a>f(x)min,而f(x)=│x-4│+│x-3│≥│(x-4)-(x-3)│=1,当且仅当x∈[3,4]时,等号成立。

所以f(x)min=1,因此的a取值范围是a∈[1,+∞]。

评注:例2表面上看本题不能使用基本不等式,但只要稍留心便能从两个分母中发现“名堂”,一个分母是,另一个分母是,两数之积正好为“1”,于是巧乘得“1”便可利用基本不等式。其实,即便不是“1”也可类似处理,只是式子前面要多乘一个系数。例4采用了绝对值三角不等式快捷的求出了参数的取值范围。

方法三: 数形结合法

将一些抽象的解析式赋予几何意义,然后通过图形的属性及数量关系进行“数”与“形”的信息转换,把代数的问题等价性的用几何的方法来求解,使之求解更简单、快捷,也是解决最值问题的一种常用方法。

例4 已知实数x、y满足等式x2+y2-6x-6y+12=0,求的最值。

分析:如果把等式看成圆的一般式,那么就有点(x,y)在圆(x-3)2+(y-3)2=6上,那么表示该点与原点连线的斜率.由于圆位于第一象限,若过原点作圆的两切线OA、OB(A,B为切点),则的最值分别是直线OA、OB的斜率。

解:设,即y=kx,∴,

整理为k2-6k+1=0。解得。

∴,。

前面通过实例,分析了解决最值问题的几种常用方法,虽然是分开叙说的,但它们并非是单独无联系的。就一道题目里面,有时也可以几种方法并用,如例3可以用单调性法,也可以用不等式法等。当然,解决最值的方法远远不止这些。比如换元法,图象法等等,这里只是对求最值的方法作一个部分的归纳。我们应该在掌握各种方法的基础上,要会比较各种方法对解决某一具体问题的优劣做到具体问题,具体分析,灵活处理。弄清问题的关键,理解解题的实质,探求解题途径的最佳方法。最后,希望通过本文的总结,能对学生们解决最值问题的能力提高有一点帮助。

篇3:求函数最值的方法总结

求函数最值的方法总结

函数的最值问题既是历年高考重点考查的内容之一,也是中学数学的主要内容。函数最值问题的概念性、综合性和灵活性较强,考题的知识涉及面较广,对于学生的分析和逻辑推理能力要求较高。通过对函数最值问题的相关研究,结合自身的感触和学习的心得,总结归纳出了求解函数最值的几种常用的方法,并讨论了学习函数最值求解中应该注意的问题,这将有利于提高学生的数学建模能力和解题能力。文章主要通过举例说明的方式来阐述求解函数最值的几种常用解法,希望对培养学生数学学习能力,提高学生的解题能力有所帮助。

函数f(x)在区间I上的最大值和最小值问题,本质上是一个最优化的问题。求解函数最大值与最小值的实际问题,包括三方面的工作:一是根据实际问题建立目标函数,通常总是选取待求的最优量为因变量:二是按上述的求解方法求出目标函数在相应区间上的最大值或最小值;三是对所求得的解进行相应实际背景的几何意义的解释。同时一方面要深刻理解题意,提高阅读能力,要加强对常见的数学模型的理解,弄清其产生的实际背景,把数学问题生活化;另一方面要不断拓宽知识面,提高间接的生活阅历,如了解一些诸如物价、行程、产值、利润、环保等实际问题,也涉及角度、面积、体积、造价等最优化问题,培养实际问题数学化的意识和能力。

最值问题综合性强,几乎涉及高中数学各个分支,要学好各个数学分支知识,透彻地理解题意,能综合运用各种数学技能,熟练地掌握常用的解题方法,才能收到较好的效果。

(1)代数法。代数法包括判别式法(主要是应用方程的思想来解决函数最值问题)配方法(解决二次函数可转化为求二次函数的最值问题)不等式法(基本不等式是求最值问题的重要工具,灵活运用不等式,能有效地解决一些给定约束条件的函数最值问题)④换元法(利用题设条件,用换元的方法消去函数中的一部分变量,将问题化归为一元函数的最值,以促成问题顺利解决,常用的换元法有代数换元法和三角换元法)。

①判别法:判别式法是等式与不等式联系的重要桥梁,若能在解多元函数最值过程中巧妙地运用,就能给人一种简单明快、耳目一新的感觉。而应用判别式的核心在于能否合理地构造二次方程或二次函数,还需注意是否能取等号。若函数可化成一个系数含有y的关于x的二次方程a(y)x2+b(y)x+c(y)=0,在a(y)≠0时,由于x,y为实数,必须有:△=[b(y)]—4a(y)c(y)≥0,由此求出y所在的范围确定函数最值。

高中数学求最值的方法

②配方法:配方法多使用于二次函数中,通过变量代换,能变为关于t(x)的.二次函数形式,函数可先配方成为f(x)=a[t(x)—m]2+n的形式,再根据二次函数的性质确定其最值(此类题的解法关键在于用“配方法”将二次函数一般式化为顶点式,同时要考虑顶点的横坐标的值是否落在定义域内,若不在定义域内则需考虑函数的单调性)。

③不等式法:均值不等式求最值,必须符合“一正、二定、三相”这三个必要条件,因此当其中一些条件不满足时应考虑通过恰当的恒等变形,使这些条件得以满足“和定积最大,积定和最小”,特别是其等号成立的条件。(在满足基本不等式的条件下,如果变量的和为定值,则积有最大值;变量的积为定值,则和有最小值。本例中计算的目的,是利用隐含在条件之中的和为定值,当然这里还需要利用系数的凑合才能达到目的,具有一定技巧)

④换元法:换元法又叫变量替换法,即把某个部分看成一个式子,并用一个字母代替,于是使原式变得简化,使解题过程更简捷(在利用三角换元法求解问题时,关键还是要在掌握好三角函数常用关系式的基础上,结合所求解的函数式,慎重使用)。

(2)数形结合法。数形结合法是数学中的一种重要的思想方法,即考虑函数的几何意义,结合几何背景,把代数问题转化为几何问题,解法往往显得直观、简捷。通过数与形之间的对应和转化来解题,有许多的优越性。将抽象的数学语言和直观的图形结合起来,借助几何图形活跃解题思路,使解题过程简化。有时函数最值也借助数形结合方法来求解。

①解析式:解析法是观察函数的解析式,结合函数相关的性质,求解函数最值的方法。

②函数性质法:函数性质法主要是讨论利用已学函数的性质,如函数的单调性求函数最值等。

③构造复数法:构造复数法是在已经学习复数章节的基础上,把所求结论与复数的相关知识联系起来,充分利用复数的性质来进行求解。

④求导法(微分法):导数是高中现行教材新增加的内容,求导法求函数最值是应用高等数学的知识解决初等问题,可以解决一类高次函数的最值问题。找闭区间[a,b]上连续的函数f(x)的最大(或最小)值时,将不可导点、稳定点及a,b处的函数值作比较,最大(或最小)者即为最大(或最小)值。

综上可知,函数最值问题内涵丰富,解法灵活,没有通用的方法和固定的模式,在解题时要因题而异;而且上述方法并非彼此孤立,而是相互联系、相互渗透的,有时一个问题需要多法并举,互为补充,有时一个题目又会有多种解法。因此,解题的关键在于认真分析和思考,因题而异地选择恰当的解题方法,当一题有多种解法时,当然应该注意选择最优解法。

以上八种方法仅作为个人的一点愚见,仅是沧海一粟,希望在应用的时候千万不能按部就班,难免会遇到瓶颈,只有弄清其本质,在应用时才能取得事半功倍的效果。

篇4:高中求最值的方法总结

高中求最值的方法总结

方法一:利用单调性求最值

学习导数以后,为讨论函数的性质开发了前所未有的前景,这不只局限于基本初等函数,凡是由几个或多个基本初等函数加减乘除而得到的新函数都可以用导数作为工具讨论函数单调性,这需要熟练掌握求导公式及求导法则,以及函数单调性与导函数符号之间的关系,还有利用导数如何求得函数的极值与最值。

例1 已知函数,当x∈[-2,2]时,函数f(x)的图象总在直线y=a-e2的上方,求实数a的'取值范围。

分析:此题属于恒成立问题,恒成立问题大都转化为最值问题。

解:原问题等价于f(x)>a-e2恒成立,即x2+ex-xex>a-e2在[-2,2]上恒成立,即x2+ex-xex+e2>a在[-2,2]上恒成立。

令g(x)=x2+ex-xex+e2>a-e2,x∈[-2,2],原问题等价于a  下面利用导数讨论g(x)的最小值,求导可得g'(x)=x(1-ex)。

当x∈[-2,0]时,g'(x)≤0,从而g(x)在[-2,0]上单调递减;

当x∈(0,2]时,g'(x)<0可知g(x)在(0,2]上也单调递减。

所以g(x)在[-2,2]上单调递减,从而g(x)min=g(2)=2即a∈(-∞,2)

评注:本题是求参数的取值范围问题,利用等价转化的思想可化为不等式恒成立问题,进而化为最值问题,再借助于导数讨论函数的单调性求出的最值。其实高中阶段接触到的最值问题大都可以运用单调性法求得最值。

方法二:利用不等式求最值

掌握和灵活运用,│a│+│b│≥│a±b│≥││a│-│b││这一类型的基本不等式,在求一些函数最值问题时通常十分便捷,在解题时务必注意考虑利用不等式求最值的条件限制 。

例2 若x∈R,且0  分析:本题可以运用单调性法求最值,但是较麻烦,下面介绍一种新的方法。

解:。

由0  则,当且仅当,即时取等号。

故当时,取得最小值9。

例3 求使不等式│x-4│+│x-3│  分析:此题若用讨论法,可以求解,但过程较繁;用绝对值不等式的性质求解却十分方便。

解:令f(x)=│x-4│+│x-3│原不等式有解,只需a>f(x)min,而f(x)=│x-4│+│x-3│≥│(x-4)-(x-3)│=1,当且仅当x∈[3,4]时,等号成立。

所以f(x)min=1,因此的a取值范围是a∈[1,+∞]。

评注:例2表面上看本题不能使用基本不等式,但只要稍留心便能从两个分母中发现“名堂”,一个分母是,另一个分母是,两数之积正好为“1”,于是巧乘得“1”便可利用基本不等式。其实,即便不是“1”也可类似处理,只是式子前面要多乘一个系数。例4采用了绝对值三角不等式快捷的求出了参数的取值范围。

方法三: 数形结合法

将一些抽象的解析式赋予几何意义,然后通过图形的属性及数量关系进行“数”与“形”的信息转换,把代数的问题等价性的用几何的方法来求解,使之求解更简单、快捷,也是解决最值问题的一种常用方法。

例4 已知实数x、y满足等式x2+y2-6x-6y+12=0,求的最值。

分析:如果把等式看成圆的一般式,那么就有点(x,y)在圆(x-3)2+(y-3)2=6上,那么表示该点与原点连线的斜率.由于圆位于第一象限,若过原点作圆的两切线OA、OB(A,B为切点),则的最值分别是直线OA、OB的斜率。

解:设,即y=kx,∴,

整理为k2-6k+1=0。解得。

篇5:高中数学求值域的方法

高中数学求值域的方法

一.观察法

通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。

例1求函数y=3+√(2-3x)的值域。

点拨:根据算术平方根的性质,先求出√(2-3x)的值域。

解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。∴函数的值域为{yOy≥3}.

点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。

本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5})

二.反函数法

当函数的反函数存在时,则其反函数的定义域就是原函数的值域。

例2求函数y=(x+1)/(x+2)的值域。

点拨:先求出原函数的反函数,再求出其定义域。

解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{yOy≠1,y∈R}。

点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。

这种方法体现逆向思维的思想,是数学解题的重要方法之一。练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{yOy1})

三.配方法

当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域

例3:求函数y=√(-x2+x+2)的值域。

点拨:将被开方数配方成完全平方数,利用二次函数的最值求。

解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]

点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。

配方法是数学的一种重要的思想方法。练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{yOy≤3})

四.判别式法

若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。

例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。

点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。

解:将上式化为(y-2)x2-(y-2)x+(y-3)=0(*)当y≠2时,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2当y=2时,方程(*)无解。∴函数的值域为2点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。常适应于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。

练习:求函数y=1/(2x2-3x+1)的值域。(答案:值域为y≤-8或y0)。

五.最值法

对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域。

例5已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域。

点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。

解:∵3x2+x+10,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较边界的大小。当x=-1时,z=-5;当x=3/2时,z=15/4。∴函数z的值域为{zO-5≤z≤15/4}。

点评:本题是将函数的值域问题转化为函数的最值。对开区间,若存在最值,也可通过求出最值而获得函数的值域。

练习:若√x为实数,则函数y=x2+3x-5的值域为A.(-∞,+∞)B.[-7,+∞]C.[0,+∞)D.[-5,+∞);(答案:D)。

六.图象法

通过观察函数的图象,运用数形结合的方法得到函数的值域。

例6求函数y=Ox+1O+√(x-2)2的值域。点拨:根据绝对值的意义,去掉符号后转化为分段函数,作出其图象。

解:原函数化为-2x+1(x≤1)y=3(-12)显然函数值y≥3,所以,函数值域[3,+∞]。

点评:分段函数应注意函数的端点。利用函数的图象求函数的值域,体现数形结合的思想。是解决问题的重要方法。求函数值域的方法较多,还适应通过不等式法、函数的单调性、换元法等方法求函数的值域。

[高中数学求值域的方法]

篇6:高中数学必修求值域方法

1高中数学必修方法

函数作为高中数学的重点知识之一,常常成为不少同学困扰的焦点。那么高中数学函数的值域该怎么求呢?下面分享几点高中数学必修一求值域方法。

在高中函数定义中,是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。 一般的,函数最值分为函数最小值与函数最大值。简单来说,最小值即定义域中函数值的最小值,最大值即定义域中函数值的最大值。函数最大(小)值的几何意义——函数图像的最高(低)点的纵坐标即为该函数的最大(小)值。

2三角函数

多以选择题和填空题形式考查基础知识,多以解答题的形式考查三角函数的图像和性质。在高考中,多以解答题的形式和三角函数的概念、简单的三角恒等变换、解三角形联合考查三角函数的最值、单调区间、对称性等,属于难题。

三角函数的最值或相关量的取值范围的确定始终是三角函数中的热点问题之一,所涉及的知识广泛,综合性、灵活性较强。解这类问题时要注意思维的严密性,如三角函数值正负号的选取、角的范围的确定、各种情况的分类讨论、及各种隐含条件等等。三角函数求最值常用方法有:配方法、化一法、数形结合法、换元法、基本不等式法等等。

三角函数的最值或相关量的取值范围的确定始终是三角函数中的热点问题之一,所涉及的知识广泛,综合性、灵活性较强。解这类问题时要注意思维的严密性,如三角函数值正负号的选取、角的范围的确定、各种情况的分类讨论、及各种隐含条件等等。三角函数求最值常用方法有:配方法、化一法、数形结合法、换元法、基本不等式法等等。

3函数值域

换元法:常用代数或三角代换法,把所给函数代换成值域容易确定的另一函数,从而得到原函数值域,如y=ax+b+_√cx-d(a,b,c,d均为常数且ac不等于0)的函数常用此法求解。

单调性法:首先确定函数的定义域,然后在根据其单调性求函数值域,常用到函数y=x+p/x(p>0)的单调性:增区间为(-∞,-√p)的左开右闭区间和(√p,+∞)的左闭右开区间,减区间为(-√p,0)和(0,√p)

反函数法:若原函数的值域不易直接求解,则可以考虑其反函数的定义域,根据互为反函数的两个函数定义域与值域互换的特点,确定原函数的值域,如y=cx+d/ax+b(a≠0)型函数的值域,可采用反函数法,也可用分离常数法。

注重数形结合的思想,解析几何,很显然,解析是数字的,公式的,而几何是图形的,图形一目了然,给人直观的感受,而公式抽象,能准确的描述图像的特征,结合之后一定会对解题有很大的帮助。并且解析几何想比较其他题型的优点在于,它可以带回试题中检验,如果算出答案后有时间,建议同学们花一两分钟检验一下你的答案,这样也有利于你对算出来的答案更有信心,提高准确率。

4一次函数

象限:y=kx时(即b等于0,y与x成正比,此时的图像是是一条经过原点的直线)

当k>0时,直线必通过一、三象限,y随x的增大而增大;

当k<0时,直线必通过二、四象限,y随x的增大而减小。

y=kx+b(k,b为常数,k≠0)时:

当 k>0,b>0, 这时此函数的图象经过一,二,三象限。

当 k>0,b<0, 这时此函数的图象经过一,三,四象限。

当 k<0,b>0, 这时此函数的图象经过一,二,四象限。

当 k<0,b<0, 这时此函数的图象经过二,三,四象限。

当b>0时,直线必通过一、三象限;

当b<0时,直线必通过二、四象限。

特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限,不会通过二、四象限。当k<0时,直线只通过二、四象限,不会通过一、三象限。

画法:一次函数的图象为直线,由于两点确定一条直线,所以只要过直线上的两个点作直线就是该一次函数的图象了。

答:作出一次函数y=2x-6的图象。

当X=0时,y=2_0-6=-6;

当Y=0时,0=2x-6,x=3。

所以,过点(0,-6)和(3,0)作直线即为y=2x-6的直线。

阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。