“Cicada”通过精心收集,向本站投稿了5篇滑模摊铺机施工过程中的质量控制,下面是小编给大家带来关于滑模摊铺机施工过程中的质量控制,一起来看看吧,希望对您有所帮助。

篇1:滑模摊铺机施工过程中的质量控制
滑模摊铺机施工过程中的质量控制
从平整度、高程及边线三个方面介绍了滑模摊铺机施工过程中的'质量控制.
作 者:姜鸿 作者单位:贵州省都匀公路管理局 刊 名:黑龙江交通科技 英文刊名:COMMUNICATIONS SCIENCE AND TECHNOLOGY HEILONGJIANG 年,卷(期): 32(3) 分类号:U416.216 关键词:滑模摊铺机 施工 质量控制篇2:浅谈滑模摊铺机施工
浅谈滑模摊铺机施工
从几个方面介绍了滑模摊铺机的施工工艺.
作 者:成俊贤 CHENG Jun-xian 作者单位:贵州省桥梁工程总公司 刊 名:黑龙江交通科技 英文刊名:COMMUNICATIONS SCIENCE AND TECHNOLOGY HEILONGJIANG 年,卷(期):2009 32(3) 分类号:U416.216 关键词:滑模摊铺机 施工 养护篇3:沉箱滑模预制施工质量控制研究论文
沉箱滑模预制施工质量控制研究论文
摘要:在沉箱预制过程中,存在诸多因素影响其施工质量,各个因素又相互制约,本文结合防城港钢铁基地码头工程24个沉箱滑模预制工艺,从模板、沉箱平整度及垂直度、混凝土质量、养护等方面简要阐述沉箱滑模预制的质量控制方法。
关键词:沉箱;滑模预制;工艺;质量控制;施工质量
1.施工简介
防城港钢铁基地项目专用码头210#、211#一万吨级泊位工程共有预制沉箱24个,单个沉箱混凝土设计方量为837m3,沉箱高度17.1m,每个沉箱墙身分12个仓格(见图1、图2)根据工期要求,每个月需预制8件沉箱,由于预制场地狭小,现场仅能布置5个预制台座,因此沉箱墙身混凝土采用汽车泵泵送混凝土的滑模预制工艺,能加快混凝土浇筑速度,缩短底模周转时间,也能避免用吊斗浇筑混凝土产生的安全风险。根据工艺要求,先常规预制1.2m底板部分,再用滑模工艺预制15.9m墙身,完成整个沉箱的预制。
2.质量控制要点
2.1底板平整度及可靠度控制
沉箱底模采用I28作支撑,采用6mm钢板作底板面板,根据沉箱底板的形状及重量分布情况,确定气囊的摆放位置、间距及数量,根据以上参数将底板分为多个区域。根据气囊的摆放将底模分为8个区域,共48小块,小块模板分为单元A与单元B两种,单元A为2m×3m布置,单元B分为0.55m×2m布置,为保证沉箱底面的`平整度,单元A、B正反面均为6mm钢板作面板,分配主梁为[6.3,间距布置为300mm,加劲梁为[6.3,布置间距为500mm,刚度满足沉箱底板混凝土浇筑后最不利位置扰度要求,保证混凝土浇筑完成后,其挠度小于1/400L,[6.3强度不大于145Mpa。底模支撑采用I28,满足气囊抽拔要求,同时在沉箱仓格加高位置布置为双拼,I28及面板铺设时,利用水准仪控制其平整度,偏差控制标准为±3mm,每2m一个检测点。同时为保证沉箱底板与台座不粘连,底模钢板上再加两层牛皮原纸。
2.2底板竖直度控制
底板预制高度为1.2m,底层模板采用定型钢模板,分为竖排、横围囹、竖桁架,为保证模板上口平直,外模上口设水平桁架一道,外模底脚通过锚杆固定,内外模之间上口通过的杆件对拉。底板模板安装完成后,利用2m靠尺控制其垂直度,测量模板端部及中部共12个点,偏差控制为±0.5mm。
2.3墙身尺寸控制
(1)墙身模板控制墙身模板为滑模模板,采用6mm花纹钢板作为操作平台面板;横肋采用[10槽钢,间距为25cm;围板采用组合钢模板,围圈(弦杆)采用型钢L80×80×8角钢连接垂腹杆、斜腹杆及工作台钢桁架分段制成,沿结构物截面周长设置,上、下各一道。提升架(门腿支架及上、下横梁,千斤顶固定位置)是由一对门腿支架(焊接件)及二对上、下横梁(14mm钢板)组成。滑动模板工作平台采用型钢L63×63×6角钢制作桁架式结构。为了减小滑模上滑阻力及保证预制沉箱尺寸,根据沉箱模板的高度将模板设置为倒锥子形,锥度不大于0.5%,所以沉箱仓格滑模模板上口尺寸较设计小5mm,下口较设计尺寸小10mm,既可利于滑模提升,同时又可防止模板在侧压力下涨模时预制沉箱尺寸超规范要求。(2)墙身混凝土接缝处理在底板模板顶端四周设置一个2~3mm凸起,模板拆除后形成一个凹槽,墙身模板落于形成的凹槽上,可有效防止滑模模板涨模漏浆造成的接缝不平顺。滑模混凝土浇筑前,先充分湿润施工缝但无多余水分,然后浇筑一层强度高于沉箱混凝土一个等级的约2cm高强砂浆,增加浆体,以防振捣时浆体流失使接缝不严密。
2.4混凝土质量及工艺控制
滑模施工过程中每h混凝土供应量在20m3左右,混凝土必须连续供应,采用混凝土汽车泵进行泵送。塌落度以入模时为准,控制在140~180mm。滑模施工的混凝土配合比的配置,满足设计所规定的强度、耐久性等要求,还需满足滑模施工工艺的要求,选用泌水率小的硅酸盐或普通硅酸盐水泥、Ⅰ级或Ⅱ级粉煤灰,级配良好的碎石及细度模数偏小的中砂。为减少混凝土对模板的摩阻力,保证出模混凝土的质量,必须根据滑升速度等控制混凝土的凝结时间,使出模混凝土达到最优出模强度。混凝土出模强度控制在0.2~0.4Mpa,出模时间控制在约3h,初凝时间控制在4h左右,施工过程中还需根据现场及天气情况进行调整。浇筑混凝土时划分浇筑区段,使各区浇筑时间大致相等。滑模滑升严格执行分层浇筑、分层振捣、均匀交圈的方法,严格按30cm分层进行,采用插入式振捣棒振捣,使每一浇筑层的混凝土表面基本保持在同一水平面上,并有计划、均匀地变换浇筑方向,还应避免直接振捣模板和爬杆,振捣棒插入深度约为下层混凝土内50mm。
2.5沉箱垂直度控制
(1)沉箱滑模操作平台水平度控制。由于沉箱底板为水平状态,所以沉箱垂直度取决于沉箱操作平台水平度,操作平台水平度通过千斤顶在爬杆钢筋上控制,模板安装完成后,由技术、测量人员给定初始位置,沉箱爬杆钢筋共有108根,由于测量通视影响,则利用水平管在每根爬杆钢筋上做标记,千斤顶上口固定于标记位置处,并锁紧。在滑升过程中,由于千斤顶滑升速度存在微小的差别,在施工过程需不断纠偏,调平操作平台,因此在爬杆钢筋上每隔30cm利用上述方法设置一道标记,在标记上口固定一个限位卡装置,当滑升速度较快千斤顶接触限位卡之后则不再往上爬升,当所有爬杆上千斤顶均接触限位卡之后,表明此时操作平台处于水平状态。拆除限位卡后不断重复,直至混凝土浇筑完成。爬杆钢筋接高时,则利用水平尺控制其垂直度,水平尺紧靠在爬杆钢筋上,接高焊接时气泡必须始终保持居中。(2)测量仪器复核。在做好操作平台水平度控制后,滑模施工过程中还存在操作平台整体水平偏移的情况发生,为杜绝此类情况,在日间和晚上均每隔两h测量沉箱垂直度,白天可利用全站仪在沉箱的各个侧面上下扫描其垂直度,夜间施工时则将激光投线仪安置在沉箱旁,整平仪器,发出激光束,使竖直激光束对准正在施工的沉箱,调节微动旋钮,将竖直激光束精确对准沉箱角点上口,使用钢直尺测量沉箱角点与竖直激光束间距离,得出沉箱垂直度情况,若发现其垂直度发生偏移大于5mm,则立即通知技术人员及时利用限位卡通过千斤顶微调操作平台。
2.6沉箱顶面标高及平整度
混凝土浇筑前,先在人员通道(爬梯)上根据沉箱底面标高设置顶面标高控制点,当沉箱高度接近设计高度50cm时,通过水平管在爬杆钢筋上做好标记,控制好混凝土浇筑标高,使其刚好达到标记位置,如不恰好,则人工增减混凝土,混凝土浇筑完成后,滑模模板预留20cm不滑脱,待混凝土接近初凝时,进行二次振捣、抹面并压光顶面混凝土。
2.7沉箱混凝土养护
滑模施工为连续不间断作业,而混凝土在出模12h后即可进行养护,在施工过程中,内外侧需喷涂养护液进行养护,外侧也可在沉箱外表处理完成后,包裹一层塑料薄膜,防止水分蒸发,形成类似蒸汽养护。混凝土浇筑完成后约12h,拆除滑模模板,在沉箱顶部沿仓格布置养护水管,并在水管上每隔10cm穿一个约直径3mm小孔,打开水阀实现24h喷淋养护,直至到养护龄期,然后利用气囊移至存放区,等待上驳出运。当沉箱养护期未达到规范时间,需在存放区配置好水管接头,继续养护。
3.结束语
综上所述,沉箱滑模预制是一个比较复杂、多方面配合的工艺,影响施工质量的环节很多,做好以上几点外还要加强钢筋的绑扎、注意天气因素的影响等工作,还需在其他方面不断总结提高,希望通过上述质量控制方法,以提高类似工程沉箱预制施工质量。
参考文献:
[1]马玉臣.重力式码头沉箱预制施工质量控制[J].中国水运,(09):89-91.
[2]张伟.沉箱安装调平测量监控控制方法改进[J].港工技术,(04):55-57.
篇4:钻孔灌注桩施工过程中的质量控制
钻孔灌注桩施工过程中的质量控制
平涉线活水大桥旧桥设计为7跨20米双曲拱桥,始建于1978年,随着车辆荷载的`逐年增加,在拱脚部位出现裂隙,给车辆通行带来极大安全隐患.按照河北省交通厅计划,对活水大桥进行拆除重建,新建桥梁下部结构为钻孔灌注桩基础,双柱式墩台,上部构造为9孔16米先张法预应力混凝土空心板,先简支后连续.全桥共20根直径1.2米钻孔灌注桩,桩总长260米.
作 者:李小利 作者单位:邯郸市交通局公路养护管理处 刊 名:交通世界(建养机械) 英文刊名:TRANSPO WORLD 年,卷(期): “”(2) 分类号:U4 关键词:篇5:水利水电工程滑模施工技术控制论文
水利水电工程滑模施工技术控制论文
1滑模技术的分析
一般滑模的模板主要包括普通模板和专业模板两种类型,甚至有些滑模施工模板还对滑行伸臂机械和动力设备进行配套。通过调查,目前,液压千斤顶在我国滑模动力设备中发挥着主要的动力源作用,其工作原理是在千斤顶的作用形成,对1m以上高度的滑框进行带动,沿刚浇筑成型的模板表面实施滑动。同时,通过模板的上口务必使混凝土逐层浇灌套槽,使每层的厚度控制在30cm以下。若模板内最下层的混凝土与一定强度要求满足之后,通过提升机具,沿已浇灌的混凝土表面进行滑动,再向上有30cm的滑动,根据该工序开展连续循环施工,直至与设计高度的要求满足之后,即对整个施工完成。水利水电工程滑模施工与铁路、桥梁及道路等工程总的滑模技术不同,水利施工中的滑模技术存在准确的尺寸、高精度、复杂结构以及浇筑量大等特点,因此造成滑模技术的运用及推广有一定的难度。其次,在水利水电工程施工中,应将滑模结构做成较小弧度变化、有门槽的效果。所以,滑模施工技术的运用不仅能够使水利水电工程施工成本降低,而且还能将混凝土施工的质量得到进一步提升。
2水利水电工程滑模施工技的术的优点
与其他工程相比,水利水电工程施工有复杂的结构存在,混凝土施工量较大,且难度、技术要求以及施工成本较高。为了使水利水电建设成本降低,实现工程经济效益及整体质量的提升,施工人员应对新的施工技术进行有效掌握,严格按照施工顺序开展水利水电工程施工、作为一种水利水电工程建设中的一项常见施工技术,滑模施工技术具有以下优点:
2.1较高的施工效率
滑模施工技术的应用能够将水利水电施工难的问题得到解决。提升施工进度,使施工时间缩短,提高施工效率。
2.2施工成本减少
在水利水电施工中,滑模技术的应用会有较少的模板周转数,加快施工速度,使模板的损耗降低,有效节省工程施工成本。
2.3混凝土浇筑速度的'加快
滑模施工技术存在连续施工的优势,使混凝土浇筑的速度得到大大提升,促使混凝土施工的质量得到保障。
3水利工程施工中滑模施工技术的要点
在水利水电施工中,与相关防水防渗的要求有所涉及,因此对混凝土质量存在较高的要求。然而,滑模施工技术的应用能够将该施工要求得到很好地实现,若要与设计要求相满足,则应从以下几方面内容入手。
3.1在施工中存在较高的混凝土质量要求
1)混凝土的配合比应与要求相符,首先应对所选用原材料的质量实施保障,对优质优良的原材料进行选用;
2)做好混凝土的配合比设计,混凝土的配合比对混凝土的质量产生直接联系,并且在滑模工序施工的顺利施工中发挥着主要条件;
3)影响滑模施工的另一因素则是混凝土的和易性;
4)混凝土入模坍落度直接影响了混凝土的输送、初凝、保温时间以及工作度。
3.2浇筑混凝土中的注意事项
1)均匀对混凝土实施浇筑,其中应确保浇筑的高度和速度,在浇筑过程中应处于均速前进的方式,使滑升操作得到保障。在浇筑振捣混凝土过程中,应分层分区等厚度进行,从吊斗或布料杆内向模板内直接浇筑的方法是不正确的。
2)禁止在钢筋上对混凝土实施浇筑,在最后进行清理时,不仅不易清理,而且还会对工程质量产生影响,最后对下一道工序的顺利进行受到制约。
3.3控制滑模
1)第一种滑模水平的控制方法是对水准仪测量进行运用,从而实施水平检查。第二种对千斤顶的同步器进行利用,发挥水平控制的作用。
2)控制滑模中线,为了确保滑模结构中不会有偏移产生,在出线竖井测量中应对激光照准仪进行利用,配合吊线施工。在整个过程中,模板可能有变形发生,采用上下面全部测量的方式,可最大限度地使竖井结构的大小尺寸得到保障。
3.4控制模板的滑升
1)安装和制作钢筋。在滑模施工中,是连续对顶板和墙体进行施工的,钢筋的制作和安装存在较大工作量,且施工周期较长,所处的工作环境条件相对恶劣,具有较多的交叉施工,在劳动安排的过程中,会使相互合作得到加强,只有这样才能使工程的整体质量及工程的施工进度得到保障。
2)在滑模初期,存在较少的滑升现象,该方法运用的目的是对滑模装置实施带负荷检验,避免出现粘模问题,并对出模的强度进行检查,进一步确定出模的时间和滑升的整体速度。
3)在正常滑升的阶段,每层浇筑的高度都应控制在200mm~300mm范围内,根据该高度向9~12个行程进行滑升,其中每隔20min~40min,对1~2个行程的滑升速度和触摸强度之间都应进行相互协调。
3.5滑模施工的纠偏要点
1)千斤顶垫铁纠偏的方法进行利用。在测量的过程中,运用钢垫板的方式能够使千斤顶底座偏移方向一侧进行垫高,促使千斤顶与支撑杆的偏离偏移的方向,使整个平台及模板系统向一定高度的滑升进行带动,从而满足偏差及扭曲纠正的目的;
2)顶轮纠偏方法的利用。该方法是对已经出模且存在一定强度的混凝土墙体进行利用,使其发挥整个平台的支点,相应通过对纠偏装置安装位置的改变,形成一个外力,在滑升的过程中,缓慢的平台和模板系统会有纠偏效果形成;
3)模板坡度平台的改变。当模板向一定高度滑升后,再向纠偏的一方对模板坡度进行调校,对混凝土进行浇筑,在后续的滑升施工中,通过对新浇筑混凝土导向作用的利用,使得平台及模板系统向原滑升的相反方向偏移,滑升至纠正偏差的方向,从而与预期的效果相满足。
3.6混凝土坍落度的控制
混凝土的坍落度在一定程度上对整个混凝土的施工质量产生直接联系,相关人员必须对施工中的坍落度实施严格控制。若在施工中采用滑模施工技术,则应根据混凝土的保温、初凝及传输的施工要求进行操作,只有这样才能确保混凝土的施工质量提升,与我国水利水电工程施工的整体施工效率产生一定联系。
3.7拆除滑模
1)为了在较低高度下对钢管内的滑模进行拆除,则应切除闸墩顶部出头的钢筋,同时切除从离心式液压千斤顶穿过的多余钢管;
2)为了使提升滑模所需的牵引力降低,应先拆除安装在滑模上的有关设备,包括照明灯具、电器设备控制箱以及电焊机等;
3)将固定滑模墩头、中间段以及墩尾三部分的螺栓拆除,并将滑模底部的吊篮拆除;
4)运用吊机将滑模的墩尾部分提升,便于将离心式液压千斤顶撤走,吊机缓缓对滑模的墩尾部分进行吊起;
5)吊机提升并吊出滑模之后,向合适的位置对吊机进行旋转,并将提升高度实施缓慢降低,当滑模的吊篮正好着地使机将下降停止。固定吊臂之后,将吊篮迅速拆除,然后缓缓向地面对滑模下放;
6)对滑模的中间部位和墩尾部位进行拆除。
4滑模施工中常见的问题及处理措施
在滑模施工中,通常会有以下问题出现:滑模操作盘倾斜、扭转、滑模盘平移、混凝土表面缺陷、模板变形以及爬杆弯曲等。该问题产生的根本原因是由于千斤顶不同步,不对称浇筑、不均匀的荷载以及纠偏过急等。所以,在施工中应把好质量关,加强观测检查工作,使良好运行状态得到保障,当有问题出现时应及时进行解决。
4.1纠偏
采用千斤顶实施自身纠偏,即对五分之一的千斤顶关闭,然后对2~3个行程滑升,再将全部千斤顶打开实施2~3个行程的滑升,重复数次,直至向设计要求进行调整即可。与各类不同情况相结合,对一定外力施加后进行纠偏。注意不得急于开展纠偏工作,以免导致有混凝土表面拉裂、滑模变形以及爬杆弯曲等问题出现。
4.2处理模板变形
运用撑杆加压使部分变形较小的模板进行复原,当有严重变形出现时,应采用拆除模板修复的方法进行处理。
4.3处理混凝土表面缺陷
运用局部立模,将高于原混凝土标号一级的细骨料混凝土进行填补,采用抹子进行抹平。
4.4处理爬杆弯曲
当爬杆有弯曲出现时,应运用钢筋或斜支撑进行加焊。当有严重弯曲存在时,应实施切断,将爬杆与下部爬杆进行焊接,并对“人”字型斜支撑进行加焊。
5结论
在我国基础设施建设中,开发和利用滑模技术对我国水利事业产生一定的推动作用。水利水电建设的效益支架关系到当地的经济发展、公共设备、社会建设以及其他人为条件等因素。通过合理规划整个施工,对相关操作人员进行培训,促使水利工程滑模施工技术的质量得到保障。






